глазная клиника
Андрей Смирнов
Время чтения: ~25 мин.
Просмотров: 19

Смерть в твоих глазах: состояние сетчатки как индикатор продолжительности жизни человека

imageЛокальная отслойка сетчатки – это отделение сетчатой оболочки глаз от сосудистой. Отслоение происходит при разрыве сетчатки и проникновении жидкости под неё. В этом случае срочно требуется медицинская помощь, иначе это может привести к полной потере зрения. Отслоение сетчатки происходит при близорукости, различных травмах, внутриглазных новообразованиях, дистрофии сетчатой оболочки, при изменениях в стекловидном теле. Очень часто трудно выяснить причину возникновения заболевания, но существуют факторы, которые этому способствуют. Способствующими факторами могут быть: сахарный диабет, синдром Марфана – это врожденный дефект строения соединительной ткани. На отслоение влияют и возрастные изменения, осложнения после хирургического лечения катаракты, миопия и воспалительные процессы глаз. Также заболеванию способствуют и наследственные факторы.Симптомы, на которые стоит обратить внимание, это – появление пелены перед глазами. Часто больные пытаются самостоятельно избавиться от дискомфорта, промывая глаз настойками трав, чая или закапывают капли. Как правило, это не приводит к положительным результатам. Очень важно на приеме у врача правильно указать, с какой стороны появилась пелена. Так как по истечению времени она может закрыть все поле зрения. Характерными явлениями отслойки сетчатки являются вспышки в виде искр, ухудшение зрения, выпадение предметов из поля зрения, читаемый текст видится в искаженном виде.Для диагностирования заболевания проводится осмотр глаз с применением специальных инструментов. Проводится исследование остроты зрения при помощи таблицы, на которой изображены в черном цвете буквы, различные знаки, рисунки. Острота определяется на расстоянии пяти сантиметров. Каждый глаз исследуется индивидуально: один открыт, а другой прикрыт. Таким образом, определяется состояние главной области сетчатки. Также проводится исследование бокового зрения, которое дает возможность оценить состояние сетчатки на периферии. Обязательно измеряется внутриглазное давление, которое проводится при помощи тонометра Маклакова. При измерении давления, на центр роговицы глаза устанавливаются окрашенные грузики, отпечаток которых позднее подвергается измерению и расшифровыванию. Процедура проводится под местным наркозом, поэтому безболезненна. Также проводится осмотр глазного дна при помощи специальной контактной линзы Гольдмана.Лечение отслойки сетчатки возможно только хирургическим путем. Но эффективность операции зависит от своевременности начатого лечения. В случае длительного течения болезни, сетчатку , не получающую кислородное питание, восстановить очень сложно. Операция выполняется под общим или местным обезболиванием. При помощи операционного микроскопа находится место разрыва сетчатки , а затем при помощи холода или лазера закрывают его. Если отслоение сетчатки произошло частично, применяют способ локального пломбирования только в области разрыва. В случае произошедших изменений в стекловидном теле, производится его замена, то есть стекловидное тело удаляется, а вместо него вводится специальный раствор, который и придавливает сетчатку к сосудистой оболочке.Средствами профилактики являются элементарные правила предосторожности и техники безопасности в быту и на производстве, что способствует предотвращению травм глаз. Людям, которым за сорок следует раз в полгода проходить осмотр офтальмолога, ибо это заболевание приводит к полной потере зрения, гипотонии глаз и к воспалительным процессам.Наша клиника ДОБРОМЕД предлагает широкий спектр услуг по лечению и профилактике многих заболеваний глаз. В нашем центре работают высококвалифицированные специалисты с многолетним стажем работы не только в нашей стране, но и за рубежом. Мы используем только самые современные и передовые методы и технологии в лечении заболеваний, которые известны человечеству. Успеху лечения в нашей клинике способствует также высокоточная диагностическая и лечебная аппаратура, благодаря которой мы выставляем диагнозы максимально точно и быстро. В ответ о нашей работе, приятно видеть тысячи здоровых и счастливых глаз наших клиентов!

Направления лечения

Заказать звонок

image

Сердечно-сосудистые заболевания не только являются одной из главных причин смертности, но и стремительно «молодеют» — все чаще от них страдают люди в возрасте от 35 до 40 лет. Разбираемся, как проверить работу сердца, пока не стало поздно. В этом нам помогает эксперт по лабораторной диагностике ЛабКвест Латытина Юлия Сергеевна.

Когда нужно проверять сердце и сосуды

Когда есть симптомы. Основными симптомами сердечно-сосудистых заболеваний считаются одышка, головокружение, повышенная потливость и отёки. Если эти симптомы регулярны, то стоит обращаться к врачу.

Когда нужно принять решение насчет занятий спортом. Речь не о легкой зарядке по утрам, а о плавании, беге, серьезных силовых тренировках, то есть нагрузках средне-высокой интенсивности. То есть заниматься можно и без рекомендации врача, но перед подготовкой к марафону нужно посетить кардиолога. Особенно, если вы хотите заниматься спортом ради результатов.

Когда есть факторы риска. Среди основных факторов риска: диабет, курение, стрессы, малоподвижный образ жизни, высокий уровень холестерина, высокое давление, сердечно-сосудистые заболевания родственников. Обо всех этих факторах нужно обязательно рассказывать врачу.

Какие есть методы диагностики сердца

Пробы Мартине и Штанге. С этими тестами можно дома измерить пульс и понять, нужно ли идти к врачу для дальнейшей диагностики. Особенно, если выраженных симптомов нет, а понять состояние здоровья хочется.

Проба Мартине проводится следующим образом: пациент должен присесть 20 раз за 30 секунд. После замерить пульс и зафиксировать результат. Далее нужно сделать минутный перерыв и замерить пульс повторно. Нормальным результатом считается разница в 60-80% между показателями пульса в состоянии покоя и после приседаний.

Для пробы Штанге нужно сделать 2-3 глубоких вдоха-выдоха и задержать дыхание. Если удается не дышать больше 40 секунд, то, скорее всего, проблем нет. Если меньше 40, нужно идти к кардиологу.

Осмотр кардиолога. Диагностика сердца начинается в кабинете кардиолога. Врач спросит о симптомах, перенесенных инфекциях, применении лекарств, употреблении алкоголя и табака, психологическом напряжении и стрессах. Также он узнает семейный и личный анамнез, выяснит, нет ли хронических заболеваний.

Кардиолог оценивает цвет кожи, чтобы исключить анемию и другие нарушения функций сердца, проверяет пульс, чтобы оценить кровоток, измеряет артериальное давление и температуру тела. Также осматривает вены шеи, перкутирует грудную клетку и выслушивает сердце стетоскопом.

При необходимости кардиолог обращается к окулисту, чтобы тот осмотрел сосуды и нервные окончания сетчатки глаза. Это также позволяет определить склонность к сердечно-сосудистым заболеваниям.

Электрокардиография. Электрокардиограмма помогает проверить работу водителя ритма сердца, оценить проводимость электрических импульсов, частоту и ритм сердечных сокращений. Также ЭКГ может показать повреждение сердечной мышцы после инфаркта. Этот метод один из самых простых безболезненных — для него нужен только электрокардиограф, проводят его, как правило, быстро.

Лабораторные анализы. Комплексные программы анализов показывают риск развития атеросклероза, который в свою очередь, может привести к развитию нарушений сердечного ритма, стенокардии, инфаркту миокарда и внезапной остановке сердца. Программы исследований показаны как мужчинам, так и женщинам. Врачи рекомендуют сдавать такой анализ всем пациентам старше 20 лет не реже, чем раз в 5 лет. При наличии факторов риска и после 40 лет исследование может назначаться чаще.

Нагрузочные тесты. Если знать, как человек выдерживает физические нагрузки, можно понять, есть ли у него ишемическая болезнь сердца, насколько поражены сосуды, а также выявить другие признаки заболеваний, которые не проявляются в состоянии покоя.

Пациента подключают к электрокардиографу и/или тонометру, он выполняет разные виды физической нагрузки, чаще всего идет по беговой дорожке или крутит педали велотренажера. Если артериальное давление становится слишком высоким или критически изменяются сегменты на ЭКГ, процедуру прекращают.

Непрерывная амбулаторная регистрация ЭКГ. Такое исследование проводят, чтобы обнаружить кратковременные и непредсказуемые нарушения сердечного ритма. Пациенту надевают холтеровский монитор, который регистрирует ЭКГ в течение 24 часов. Данные передаются на компьютер врача. Также во время исследования пациент должен фиксировать все симптомы, связанные с работой сердца.

Рентгенография. Ее делают почти любому человеку с подозрением на болезни сердца. По рентгеновскому снимку грудной клетки оценивают размер и форму сердца, структуру сосудов в легких и грудной полости. Также по снимку можно оценить состояние легких, выявить избыточную жидкость — это может указывать на выраженную сердечную недостаточность.

Компьютерная томография. Этот метод позволяет увидеть изменение в сердце, главных сосудах и легких. С помощью КТ проводят «срезы» грудной клетки в нескольких плоскостях и на компьютере составляют модель сердца, по которой можно изучать его особенности.

Эхокардиография или УЗИ. В этом методе используется ультразвук — через специальный датчик, приложенный к телу, ультразвуковые волны распространяются в тканях, изменяют свои характеристики в зависимости от состояния внутренних органов и возвращаются к датчику, преобразуясь в электрический сигнал. Метод, как и предыдущий, дает информацию об анатомии сердца, позволяет выяснить причины шумов, оценить работу сердца.

Магнитно-резонансная томография. Этот метод позволяет получить точные изображения сердца с помощью магнитного поля. Плюсы исследования в его точности, минусы — в дороговизне, большом количестве времени на получение изображения, вероятных приступах клаустрофобии у пациентов, помещенных в большой электромагнит.

Радионуклидное исследование. Этот метод используют как альтернативу рентгенологическим исследованиям: используют радиоактивные индикаторы, но с вероятностью гораздо меньшего облучения. Индикаторы вводят в вену, и они, попадая в сердце, передают сигнал на экран компьютера.

С помощью этого метода ищут источники болей в груди неизвестного происхождения. Например, можно обнаружить, как именно сужение сосудов влияет на работу сердца.

Катетеризация сердца. В ходе такого исследования тонкий катетер с измерительным прибором на кончике вводят через артерию или вену. Его ведут до главных сосудов и сердечных камер. Катетеры позволяют измерять давление, исследовать сердечные клапаны и сосуды.

Ученые МФТИ в сотрудничестве с исследователями Гарварда вырастили клетки сетчатки, которые способны врастать в глаза. Это первая в мире успешная попытка трансплантации ганглионарных клеток (нейроны сетчатки, которые разрушаются при глаукоме), полученных из стволовых клеток в лабораторных условиях. Далее выращенные клетки нужно будет трансплантировать в сетчатку. Ученые проверили технологию на мышах и удостоверились в успешном встраивании клеток и их выживании на протяжении года. В дальнейшем исследователи планируют создать специализированные банки клеток, которые позволят индивидуально подбирать терапию для каждого пациента.

Операция «Трансплантация»

Первую в мире успешную попытку выращивания и трансплантации ганглионарных клеток сетчатки из стволовых произвели ученые лаборатории геномной инженерии МФТИ в сотрудничестве с исследователями Гарвардской медицинской школы. Ганглионарные клетки ответственны за передачу зрительной информации, и именно они повреждаются при глаукоме. Ученым удалось не только вырастить нейроны (ганглионары считаются специализированными нейронами), но и трансплантировать их в глаза мышей, добившись правильного врастания искусственной ткани сетчатки. Как известно, без лечения развитие глаукомы может привести к необратимому повреждению части зрительного нерва и, как следствие, потери части визуального поля. Прогрессируя в течение долгого времени, эта болезнь может привести и к полной слепоте.

В поле зрения: ученые открыли ген наследственной слепоты Болезнь вызывает мутация, из-за которой перестает вырабатываться важный белок

Клетки сетчатки были выращены в специальных органоидах, ткань формировалась в пробирке, рассказал «Известиям» младший научный сотрудник лаборатории геномной инженерии МФТИ Евгений Кегелес. Потом эти клетки пересадили мышам, которые были распределены в несколько групп.

— Были мыши с моделью глаукомы, мыши с повышенным внутриглазным давлением и те, у которых были удалены собственные ганглионары, — отметил Евгений Кегелес. — Были также новорожденные мыши: мы проверяли гипотезу более успешной приживаемости молодых ганглионарных клеток в формирующейся сетчатке. В результате оказалось, что клетки встроились и прорастили аксоны, которые позволят связать глаз с мозгом. Улучшенная выживаемость клеток у новорожденных мышей дает нам перспективное направление для поиска наилучшего микроокружения.

По словам Евгения Кегелеса, эти клетки успешно просуществовали внутри сетчатки 12 месяцев, что является серьезным сроком для такого исследования. Ученым удалось убедиться, что они получают зрительные сигналы, однако то, что клетки передают сигналы в мозг, со стопроцентной уверенностью утверждать пока нельзя.

— Мы точно знаем, что выращенные клетки встраиваются куда надо, протягивают аксоны в мозг, но их функциональность оценить пока невозможно, — объяснил Евгений Кегелес. — Это связано с тем, что до сих пор нам не удалось вырастить большое количество клеток. Это вопрос ближайших лет.

По его словам, исследователям нужен год, чтобы они смогли оценить функциональность клеток на мышиных моделях. В течение этого времени можно будет получить доказательство, что клетки не просто правильно встроены в структуру глаза, а они именно «видят».

Клеточный банк

Сейчас мышиные клетки сетчатки удается вырастить примерно за 21 день. В случае человека это будет от 50 до 100 дней, говорят ученые МФТИ.

Однако, скорее всего, человеку с глаукомой, готовящемуся к трансплантации, не нужно будет выращивать ткань сетчатки из собственных стволовых клеток. Так как глаз является иммунопривилегированным органом, где отторжения редки, возможно создать банк клеток для таких пациентов. Там будут размещены или выращенные клетки сетчатки от универсального донора, или из индуцированных плюрипотентных стволовых клеток. Это значит, что можно будет заранее вырастить клетки, заморозить их и, когда пациент с глаукомой обратится за помощью, подобрать для него наилучший клеточный вариант для трансплантации.

Земля не плоская: вернуть объемное зрение помогут компьютерные очки Разработанный российскими учеными прибор исправит серьезную патологию за несколько месяцев в домашних условиях

Впоследствии эту технологию можно будет применять и для лечения других заболеваний глаз, например дистрофии сетчатки. Однако выращивать придется другие клетки.

— Нобелевскую премию за индуцированные плюрипотентные стволовые клетки дали почти 10 лет назад, в 2012 году, — отметил руководитель лаборатории геномной инженерии Павел Волчков. — Так называемый хайп, когда буквально все научные коллективы считали своим долгом заниматься этой тематикой, давно угас. Сейчас настало время не просто слов, а реальных технологий на основе iPS (искусственные плюрипотентные стволовые клетки человека. — «Известия»). И именно к таким технологиям относится исследование по трансплантации ганглионаров сетчатки. Это возможность показать, что стволовые клетки реально можно применить на практике, с их помощью можно что-то исправить. Хотя эта работа еще не доведена до клиники, но она уже в нескольких шагах от реальной пересадки с целью лечения глаукомы.

Учитывая большой опыт экспериментальных работ мировых ученых и активное изучение вопроса заместительной клеточной терапии в офтальмологии, в дальнейшем метод может привести к прорыву в диагностике и лечении глаукомы, считает заведующая отделением офтальмологии ФГБУ НМИЦО ФМБА России, действительный член Европейского общества катарактальных и рефракционных хирургов (ESCRS), член Российского общества офтальмологов Ника Тахчиди.

Слепой метод: что помогает незрячим ориентироваться в телефоне и мире Прототипов сотни, реально доступных устройств — единицы

— В ряде зарубежных работ показано, что введенные клетки встраиваются в сетчатку и частично дифференцируются в клетки сетчатки. В настоящее время описаны и обсуждаются два основных механизма действия клеток in vivo и in vitro. Замещающая терапия — когда клетки, образующиеся в результате дифференцировки введенных стволовых клеток, «включаются» в восстанавливаемую ткань. «Эффект стороннего наблюдателя» — когда вводимые стволовые клетки оказывают противовоспалительное, трофическое или иммуномодулирующее действие на восстанавливаемую ткань. Однако, несмотря на прорыв в изучении морфофунциональных свойств стволовых клеток, обеспечить гарантированное послойное замещение культивированными клетками поврежденных участков сетчатки при использовании практикуемых методов введения на сегодняшний день невозможно, что и подтверждается рядом экспериментальных работ, — сказала Ника Тахчиди.

Впрочем, многие ученые в мире сейчас работают в этом направлении, пытаясь создать клеточную терапию лечения атрофии зрительного нерва, дистрофии сетчатки и глаукомы, отметила заведующая отделением офтальмологии клинико-диагностического центра «Медси», врач-офтальмолог Ирина Евсегнеева.

— Но никаких данных на сегодняшний день о том, что пересаженные клетки передают изображение, нет. Любая идея, как это сделать, заслуживает внимания, — сказала она.

По оценке ученых МФТИ, на доведение технологии до применения в лечебной практике уйдет примерно 10 лет.

Читайте также Порядка 40 млн слепых людей во всем мире нуждаются в технологиях, которые могут вернуть способность видеть. Однако до сих пор не существует доступного способа протезирования зрения

Мы привыкли ассоциировать зрение лишь с глазами. Однако помимо самих глазных яблок в процессе участвует зрительная кора головного мозга, которой мы фактически «видим», и нервные пути, которые соединяют глаза с мозгом. Практически на каждом этапе можно попытаться реализовать протезирование.

История создания зрительного протеза

Немецкий психолог Иоганн Пуркинье в 1823 году заинтересовался вопросами зрения и галлюцинаций, а также возможностью искусственной стимуляции зрительных образов. Принято считать, что именно он впервые описал зрительные вспышки — фосфены, которые он получил при проведении простого опыта c аккумулятором, пропуская через голову электрический ток и описывая свой визуальный опыт.

Спустя 130 лет, в 1956 году, австралийский ученый Дж. И. Тассикер запатентовал первый ретинальный имплант, который не давал какого-то полезного зрения, но показал, что можно искусственно вызывать зрительные сигналы.

Ретинальный имплант (имплант сетчатки) «вводит» визуальную информацию в сетчатку, электрически стимулируя выжившие нейроны сетчатки. Пока вызванные зрительные восприятия имели довольно низкое разрешение, но достаточное для распознавания простых объектов.

Но глазное протезирование долго тормозилось из-за технологических ограничений. Прошло очень много времени, прежде чем появились какие-то реальные разработки, которые смогли дать «полезное зрение», то есть зрение, которым человек мог бы воспользоваться. В 2019 году в мире насчитывалось около 50 активных проектов, фокусирующихся на протезировании зрения.

Первые ретинальные импланты

Пару лет назад на рынке было доступно три ретинальных импланта, которые прошли клинические испытания и были сертифицированы государственными регулирующими органами: европейским CE Mark и американским FDA.

  • Second Sight Medical Products, США
  • Pixium Vision, Франция
  • Retina Implant AG, Германия

Так выглядели первые ретинальные импланты

Бионические импланты — это целая система внешних и внутренних устройств.

IRIS II (Pixium Vision) и Argus II (Second Sight) имели внешние устройства (очки с видеокамерой и блок обработки видеосигнала). Слепой человек смотрит при помощи камеры, с нее картинка направляется в процессор, где изображение обрабатывается и распадается на 60 пикселей (для системы Argus II). Затем сигнал направляется через трансмиттер на электродную решетку, вживленную на сетчатке, и электрическим током стимулируются оставшиеся живые клетки.

В немецком импланте Alfa АMS (Retina Implant) нет внешних устройств, и человек видит своим собственным глазом. Имплант на 1600 электродов вживляется под сетчатку. Свет через глаз попадает на светочувствительные элементы и происходит стимуляция током. Питается имплант от подкожного магнитного коннектора.

Субретинальный имплантат Alpha AMS компании Retina Implant AG

Все три ретинальных импланта больше не производятся, так как появилось новое поколение кортикальных протезов (для стимуляции коры головного мозга, а не сетчатки глаза). Однако хотя проектов по фундаментальным разработкам по улучшению ретинальных имплантов еще много, ни один из них не прошел клинические испытания:

  • Улучшенный имплант DRY AMD PRIMA компании Pixium с увеличением количества электродов для стимуляции большего количества клеток сетчатки проходит клинические испытания. Для участия в программе испытаний еще ищут пять кандидатов;
  • Retina Implant AG закрыли производство;
  • Second Sight проводят клинические испытания своего кортикального импланта, но в марте 2020 года компания уволила 80% сотрудников из эксплуатационно-производственного подразделения.

Тренды ретинальных имплантов: основные фундаментальные технологии

Ретинальные нанотрубки

Группа ученых из Китая (Shanghai Public Health Clinical Center) в 2018 году провела эксперимент на мышах, в ходе которого вместо не функционирующих фоторецепторов сетчатки предложила использовать нанотрубки. Преимущество этого проекта — маленький размер нанотрубок. Каждая из них может стимулировать только несколько клеток сетчатки.

Биопиксели

Группа ученых из Оксфорда стремится сделать протез максимально приближенным к естественной сетчатке. Биопиксели в проекте выполняют функцию, схожую с настоящими клетками. Они имеют оболочку из липидного слоя, в который встроены фоточувствительные белки. На них воздействуют кванты света и как в настоящих клетках изменяется электрический потенциал, возникает электрический сигнал.

Перовскитная искусственная сетчатка

Все предыдущие фундаментальные разработки направлены на стимулирование всех слоев живых клеток. При помощи технологии перовскитной искусственной сетчатки китайские ученые пытаются предоставить возможность не только получать световые ощущения, но и различать цвет за счет моделирования сигнала таким образом, чтобы он воспринимался мозгом как имеющий определенную цветность.

Фотогальваническая пленка Polyretina

В Polyretina используется маленькая пленка, покрытая слоем химического вещества, которое имеет свойство поглощать свет и конвертировать его в электрический сигнал. Пленка размещена на сферическом основании, чтобы можно было удобно разместить ее на глазном дне.

Фотогальванический имплант Polyretina

Субретинальное введение полупроводникового полимера

Итальянские ученые предлагают технологию введения полупроводникового полимерного раствора под сетчатку, при помощи которого свет фиксируется и трансформируется в электрические сигналы.

Российский опыт ретинального протезирования

В России в 2017 году при поддержке фондов «Со-единение» и «Искусство, Наука и Спорт» было приобретено и установлено два ретинальных импланта Argus II американской компании Second Sight. Это единственные операции по восстановлению зрения, которые были проведены в России за все время. Каждая операция вместе с реабилитацией стоила порядка 10 млн руб, а сама система имплантации для одного пациента — порядка $140 тыс. Все прошло успешно, и два полностью слепых жителя Челябинска — Григорий (не видел 20 лет) и Антонина (не видела 10 лет) — получили предметное зрение. Предметное зрение означает, что человек может видеть очертания предметов — дверь, окно, тарелку — без деталей. Читать и использовать смартфон они не могут. Оба пациента имели диагноз «пигментный ретинит» (куриная слепота).

На момент 2019 года в мире установлено около 350 имплантов, произведенных компанией Second Sight. Около 50 тысяч россиян нуждаются в подобном протезе сетчатки.

В России опытом в протезировании зрения может похвастаться лишь один проект — АНО Лаборатория «Сенсор-Тех».

«Трендом в фундаментальных разработках бионических протезов является стремление сделать их максимально безопасными, приближенными к биологическим тканям людей и с максимально возможным разрешением. Но настоящую революцию вызвали кортикальные импланты, и смысл в ретинальных имплантах пропал, так как они ставятся только при пигментном ретините и возрастной макулярной дегенерации при отсутствии ряда противопоказаний. Кортикальные же импланты значительно расширяют горизонт показаний и позволяют восстанавливать полезное зрение даже людям, вовсе лишенным глаз», — рассказал Андрей Демчинский, к.м.н., руководитель медицинских проектов АНО Лаборатория «Сенсор-Тех».

Кортикальные системы имплантации

Кортикальные протезы — это подгруппа визуальных нейропротезов, способных вызывать зрительные восприятия у слепых людей посредством прямой электрической стимуляции затылочной коры мозга, которая отвечает за распознавание изображений. Этот подход может быть единственным доступным лечением слепоты, вызванной глаукомой, терминальной стадией пигментного ретинита, атрофией зрительного нерва, травмой сетчатки, зрительных нервов и т.п. За последние пять лет ученые решили задачу создания такого внутрикортикального визуального нейропротеза, с помощью которого можно было бы восстановить ограниченное, но полезное зрение.

В 1968 году Г.С. Бридли и В.С. Левин провели первую операцию по установке кортикальных имплантов. Первый имплант состоял из шапочки с коннекторами (устанавливали на череп под кожу) и отдельной дуги с электродами (устанавливали под череп), которые стимулировали кору головного мозга. Эксперимент был проведен на двух добровольцах для оценки возможности получения полезного зрения. Позднее импланты были извлечены. Технология кортикальных имплантов была заморожена по причине провоцирования приступов эпилепсии при стимуляции большего количества клеток мозга.

Первый кортикальный имплант

Кортикальный имплант Orion

Спустя 45 лет американский лидер разработки ретинальных имплантов Second Sight создал кортикальную протезную систему ORION. В конце 2017 года Second Sight получили разрешение от Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) на проведение клинических испытаний. До апреля 2018 года было установлено шесть устройств. По результатам испытаний оказалось, что все пациенты ощущали зрительные стимулы, a у трех пациентов результаты были схожи с ретинальным имплантом Argus II и дали полезное предметное зрение. Клинические испытания будут проходить до июня 2023 года. Обязательным условием установки импланта является наличие у пациента зрительного опыта, то есть он может использоваться только для людей со сформированной зрительной корой, которые родились зрячими и потеряли зрение.

Система кортикальной имплантации Orion компании Second Sight

Кортикальный нейропротез CORTIVIS

Испанские ученые разработали кортикальный имплант под названием CORVITIS. Протез состоит из нескольких компонентов. Одна или две камеры обеспечивают получение изображения, которое затем обрабатывается биопроцессором, чтобы преобразовать визуальный образ в электрические сигналы. На втором этапе информация сводится в серию изображений и передается по радиочастотной связи на имплантированное устройство. Этот радиочастотный блок обеспечивает беспроводную передачу питания и данных во внутреннюю систему. Имплантированный электронный блок декодирует сигналы, определяет и контролирует форму напряжения и амплитуду формы волны, которая будет подаваться на соответствующие электроды. Клинические испытания на пяти пациентах завершатся в мае 2023 года.

Кортикальный имплант CORVITIS

Интракортикальный зрительный протез (WFMA)

Американские ученые разработали технологию многоканальной внутрикортикальной стимуляции с помощью беспроводных массивов металлических микроэлектродов и создали беспроводную плавающую микроэлектродную решетку (WFMA).

Система протеза состоит из группы миниатюрных беспроводных имплантируемых решеток-стимуляторов, которые могут передавать информацию об изображении, снятом на встроенную в очки видеокамеру, непосредственно в мозг человека. Каждая решетка получает питание и цифровые команды по беспроводной связи, так что никакие провода или разъемы не пересекают кожу головы. Посылая команды в WFMA, изображения с камеры передаются непосредственно в мозг, создавая грубое предметное визуальное восприятие изображения. Хотя восприятие не будет похоже на нормальное зрение, с его помощью человек может вести самостоятельную деятельность. Система ICVP получила одобрение FDA для проведения клинических испытаний.

Интракортикальный зрительный протез (WFMA)

Кортикальный протез NESTOR

Голландские ученые также разработали схожую технологию системы протезирования. Принцип функционирования протеза такой же, как в проектах выше. Камера отправляет сигнал на имплант, который состоит из тысяч электродов и смарт-чипа. С помощью процессора зрительное восприятие можно контролировать и регулировать.

«Хотя полное восстановление зрения пока кажется невозможным, кортикальные системы создают по-настоящему значимые визуальные восприятия, при помощи которых слепые люди могут распознавать, локализировать и брать предметы, а также ориентироваться в незнакомой среде. Результат — в существенном повышении уровня жизни слепых и слабовидящих. Такие вспомогательные устройства уже позволили тысячам глухих пациентов слышать звуки и приобретать языковые способности, и такая же надежда существует в области визуальной реабилитации», — обнадежил Андрей Демчинский.

Обновлено 14.08.2020 image Posted at 11:16h   Офтальмологические исследования и методики

Как проверяют остроту зрения?

Острота зрения — это способность глаза, позволяющая видеть два объекта или две точки, находящиеся друг от друга на определенном расстоянии, раздельно. Эта функция зрительного аппарата — одна из самых важнейших, зависит она от ширины зрачка, рефракции, прозрачности хрусталика, роговой оболочки и стекловидного тела, состояния сетчатки, зрительного нерва, а также от возраста и прочих факторов. Острота зрения определяется офтальмологом с помощью таблиц и компьютерного оборудования. С помощью приборов врач исследует глазное дно, состояние сетчатки и глаза в целом, вычисляет различные параметры, которые потребуются для подбора средств коррекции — очков и контактных линз. Кроме того, может потребоваться сдача анализов и иные процедуры для установления причин ухудшения зрительных функций. Острота зрения определяется посредством специальных таблиц, самая известная из которых — таблица Сивцева. Она знакома каждому человеку со школьного возраста. Есть и другие методики. Узнаем, в чем заключаются их особенности и как проверить зрение самостоятельно, не обращаясь к специалисту.

Таблица Сивцева

imageЭто таблица для определения остроты зрения, придуманная ученым, офтальмологом Сивцевым Дмитрием Александровичем. Она представляет собой группу печатных букв — оптотипов. Их всего семь: Б, И, К, Ш, Ы, М, Н. В разном порядке они вписаны в 12 строк. Начиная с верхней строчки оптотипы уменьшаются в размерах. Справа от строк указывается величина, соответствующая остроте зрения. На плакате она обозначена латинской литерой V, а выражается она в условной единице (не путать с диоптриями), с которой человек может различить букву с расстояния пяти метров (0,1, 0,2, 0,3 и так далее). Слева от букв — другая величина — расстояние, с которого человек с хорошим зрением должен свободно прочитать букву. Обозначается данный параметр литерой D.

Как проверяется зрение по таблице Сивцева?

Оптотипы Поляка

imageОптотипы Поляка — способ определения остроты зрения, названный в честь советского офтальмолога Бориса Львовича Поляка. Он создал свой метод специально для военно-врачебной и медико-социальной экспертизы, в ходе которой выявляется инвалидность или годность к военной службе. Оптотипы представляют собой изображенные на плакате палочки, штрихи, кольца, которые располагаются на достаточно близком расстоянии от глаз пациента. По ширине просветов между штрихами, а также толщине линий определяется острота зрения в диапазоне от 0,04 до 0,09.

Таблица Головина

imageОтличается от таблицы для проверки зрения, предложенной Сивцевым, и используются они, как правило, совместно, однако в ней в качестве оптотипов применяются кольца Ландольта — черные круги, разорванные с одной стороны. Расположены кольца на плакате аналогично оптотипам в таблице Сивцева. Метод Головина является более достоверным, ведь запомнить кольца и обмануть окулиста намного сложнее, чем в случае с буквами.

Существуют и другие таблицы и способы определения остроты зрения, какой таблицей проверять зрение у Вас, решает врач. Все зависит от конкретного случая, жалоб пациента и хода обследования.

Правила проверки остроты зрения

  1. Исследовать остроту зрения следует монокулярно – отдельно каждого глаза. И всегда начинать с правого.
  2. Оба глаза пациента должны быть открыты, один нужно закрыть щитком из непрозрачного материала. За неимением щитка можно закрыть глаз ладонью (но не пальцами) пациента. Важно не нажимать через веки на прикрытый глаз, так как это может вызвать временное снижение остроты зрения. Щиток или ладонь следует держать перед глазом вертикально, чтобы возможность умышленного или неумышленного подглядывания была исключена, а свет попадал в открытую глазную щель сбоку. Недопустимо при исследовании остроты зрения щуриться; при близорукости это приводит к повышению остроты зрения;
  3.  Проводить исследование следует при правильном положении головы и век. Нужно следить, чтобы голова была не наклонена ни к одному плечу, ни вперед или назад, и не повернута вправо или влево.
  4.  Необходимо учитывать фактор времени: при обычной проверке время определения оптотипа составляет 2–3 с, при контрольно-экспертных исследованиях – 4–5 с;
  5.  Показывать оптопипы в таблице следует указкой, конец которой должен быть хорошо различим, при работе с проектором знаков – лазерной указкой;

Первые симптомы снижения остроты зрения

Причин, в результате которых зрение ухудшается, достаточно много. Они могут быть инфекционного и неинфекционного характера, врожденные и приобретенные. Если Вы почувствовали, что стали хуже видеть, то не стоит задумываться о причинах, а лучше сразу пойти к врачу. Только он, проведя детальное обследование, установит причины, поставит диагноз и назначит лечение или выпишет рецепт на средства коррекции. При этом есть несколько признаков, которые могут свидетельствовать об ухудшении зрительных функций. Обычно они быстро замечаются. Поэтому важно просто не игнорировать их, а принять соответствующие меры.  Существуют три явных признака падения зрения: Невозможность видеть объекты, которые раньше было разглядеть достаточно просто. Например, Вы не видите при письме или чтении буквы, они становятся расплывчатыми. При этом, если прищурить глаза, то они снова хорошо видны.  Не удается разглядеть надписи на витринах магазинов, вывески на домах и другие тексты на большом расстоянии.  Предметы и объекты теряют яркость, становятся тусклыми, размытыми, нечеткими.

Если эти симптомы развиваются стремительно, то меры по стабилизации зрения и остановки прогрессирования патологии нужно принимать незамедлительно. Сегодня факторов, которые оказывают негативное влияние на глаза, множество. Но и медицина развивается быстро. Проверить свое зрение можно дома или в любой поликлинике. Более того, различные компании предлагают огромный выбор средств коррекции (очки и контактные линзы всех типов на любой вкус покупателя). Вам нужно лишь тщательнее заботиться о своем здоровье: правильно питаться, чаще бывать на свежем воздухе, вести активный образ жизни, соблюдать гигиену глаз, выполнять гимнастику для органов зрения, если работа связана с нагрузкой на глаза, и регулярно проверяться у офтальмолога.

Причины снижения остроты зрения

  • Нарушения рефракции Снижение остроты зрения может появляться по множеству причин, но чаще всего оно вызвано нарушениями рефракции:
    1. Близорукость, при которой увеличение глазного яблока вызывает снижение четкого видения вдаль.
    2. Дальнозоркость, при которой уменьшение глазного яблока вызывает снижение четкого видения вблизи.
    3. Астигматизм, при котором нарушения зрения (искажения, частичная размытость изображения предметов) возникают из-за патологических изменений формы роговицы или хрусталика (часто возникает у детей и может быть врожденным).
    4. Пресбиопия, или «возрастная дальнозоркость», состояние при котором из-за уменьшения эластичности хрусталика человек хуже видит вблизи. Заболевание развивается, как правило, после 40 лет.
  • Повышение внутриглазного давления
  • Травма глаза
  • Заболевания сетчатой оболочки глаза
  • Заболевания хрусталика
  • Заболевания роговицы
  • Заболевания эндокринной системы
  • Заболевания позвоночника
  • Переутомление

Как часто следует проверять остроту зрения

Остроту зрения нужно проверять регулярно. Если нет проблем со зрением, то, по обобщенным рекомендациям разных специалистов, со следующей периодичностью:

  • вскоре после рождения;
  • около 6 месяцев;
  • в 3 года;
  • с 4 до 18 лет – ежегодно;
  • с 19 до 64 лет – каждые два года;
  • после 65 лет – ежегодно.

При выявлении нарушений зрения врач-офтальмолог может назначить проверки чаще.

Рецепт на очки

imageПосле определения остроты зрения офтальмолог или оптометрист выписывают рецепт на изготовление очков, в котором указываются: данные пациента, функциональное назначение очков (для дали, для чтения, для постоянного ношения и т. д.), необходимая оптическая сила сферических и, если нужно, цилиндрических линз (с указанием значений осей цилиндра), межзрачковое расстояние.

Если Вы заметили  у себя падение остроты зрения, то Вам необходимо обратиться в наш офтальмологический центр МЦ «ОПТИКА» в Севастополе, Евпатории или Феодосии, опытные врачи-офтальмологи проверят остроту  зрения глаза как взрослым, так и детям,  либо по таблице остроты зрения, либо с помощью автоматического  проектора знаков. Вовремя замеченное снижение остроты зрения при обследовании позволит Вам  своевременно точно поставить диагноз и выработать методику лечения и коррекции остроты зрения.

Для записи на проверку остроты зрения звоните по нашим телефонам, указанным в разделе Контакты

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации