глазная клиника
Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 3

Зрительные пигменты и передача зрительного сигнала

Главная База знаний “Allbest” Биология и естествознание Зрительные пигменты

Поглощение света зрительными пигментами глаза. Строение родопсина, колбочки, цветовое зрение. Свойства каналов фоторецептора, передача сигнала в них. Рецепторы позвоночных, деполяризующиеся при действии света. Сигналы в ответ на одиночные кванты.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 28.10.2009
Размер файла 398,1В K

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу.

Перейти к навигации Перейти к поиску image Рис.1a. Принципиальная схема организации цветного зрения (на примере сетчатки цыплёнка). А. Фоторецептор-колбочка с пигментами. Свет проходит сквозь хрусталик и фиксируется (фильтруется) соответствующим пигментом в конусной мембране колбочки, расположенной на её «дне». Как видим имеются четыре сечения мембраны с пигментами четырёх цветов. (У человека три сечения цветов пигмента RGB — Трихроматизм (цветное зрение). Колбочка А с четырьмя вариантами работы при её освещении. Б.1-Б.4 У птиц обычно четыре варианта работы колбочки (они «тетрахроматы»), что позволяют им синтезировать многоцветное изображение, и различать цвета лучше, чем человек. Обработка полученных разностных сигналов, происходящая в нейронной сети сетчатки (десятки типов клеток) обеспечивает возможность ясного различения тысяч цветов и оттенков. Важно, что схема цветного зрения человека может быть показана в виде колбочки A, способная принимать любой луч основного цвета RGB в трёх соответственных сечениях внешней мембраны S,M,L — трихроматизма.[1] Рис. 2a. В Диаграмме CIE rg цветность пространства показывает построенный треугольник, определяющий цветовое пространство CIE XYZ (См. XYZ (цветовая модель)). Треугольник Cb-Cg-Cr это только xy=(0,0), (0,1), (1,0), треугольник CIE xy— цветность пространства. Линия, соединяющая Cb и Cr это линия нулевой яркости на цветовом графике (alychne). Обратите внимание, что спектральный локус проходит через rg=(0,0) на 435.8 нм, через rg=(0,1) в 546.1 нм и через rg=(1,0) при 700 нм. (По старой системе применялось цветовое пространство RGB и рассчитывалось без учёта линейной функции, а область полученной цветовой палитры была внутри треугольника с углами в точках 430 нм, 540 нм и 570 нм). Значение же энергии самой яркой точки (E) при rg=xy=(1/3,1/3) равное (белый цвет). (См. также XYZ (цветовая модель), Цветовые координаты)[2]

Зрительные пигменты и передача зрительного сигнала (зрительная фототрансдукция (версия Миг)) — комплекс понятий для описания фототрансформации пигментов и их регенерации; процессов передачи сигнала, происходящих в глазе позвоночных животных. Эти биохимические процессы проходят при воздействии света с различной длиной волны (разного цвета), связанные с изменениями в структуре и взаимодействиях зрительных пигментов, находящихся в бислойных биомембранах, во внешней доле фоторецептора (в мембране колбочек, палочек).

Изменения в фоторецепторах[править | править код]

Фоторецепторы позвоночных животных, например, приматов, человека реагируют на свет (цвет) посредством изменений в содержащихся в них зрительных фотопигментов (см.Опсины (версия Миг). Зрительные пигменты фоторецепторов сетчатки глаза и передача зрительного сигнала) происходит в бислойных мембранах внешней доли фоторецептора (колбочки, палочки).

Зрительный пигмент состоит из белка, названного опсином хромофора — производного витамина А, известного как вещество, относящееся к сетчатке глаза. Витамин А — производное бета-каротина (cм. также G-белки), находящегося в нашей пище, белки синтезируется в клетке фоторецептора (см. выше) и описываются под общим названием опсины и хромофоры, они в связанном виде находятся в глубине внешних долей биполярных дисков мембран фоторецепторов (колбочек, палочек).

Рис.8.[3] Рис.9{{тчк}[3]

  • Рис. 8. Схематическая диаграмма родопсина во внешних дисках доли;
  • Рис. 9. Структурная модель родопсина.

Приблизительно 50 % опсинов находится в пределах бислойной липидной мембраны, связанной короткими петлями белка снаружи. Каждая молекула rhodopsinа состоит из семи этих трансмембранных частей, окружающих хромофор (он относится к сетчатке глаза 11 СНГ) в двойном слое липида. Хромофор очевидно находится горизонтально в мембране и связан в остатке лизина спирали семь (Hargrave и др. 1984, Hargrave и McDowell, 1992). Каждый внешний диск доли мембраны, конечно, содержит много (тысячи) визуальных молекул пигмента. После поглощения фотона света, то относящийся к сетчатке глаза пигмент изомеризуются из формы с 11 СНГ к форме после произшедших всех преобразований, которые начинают конформационные изменения в молекуле, что приводит к восстановлению структуры рецептора. Несколько посредников сформированы при отбеливании метародопсина II, который активизирует G-белок transducina и создаёт дальнейший каскад событий, описанных ниже (см. обзор Hargrave и McDowell (1992) и Стрельцом, 1995).

Свет преобразует зрительный пигмент через следующий ферментный каскад: фотоны — родопсин — активизированный rhodopsin (metarhodopsin II) — GTP обязательный белок (трансдуцин) — фермент, гидролизирующий cGMP (cGMP-phosphodiesterase). В итоге возникает закрывающаяся мембрана экстерорецептора, связавшая cGMP с регулируемым катионным каналом.

В темноте устойчивый поток течет в открытые каналы, которые несут главным образом ионы Na, составляя «темный поток», который частично деполяризует ячейку фоторецептора. Таким образом, деполяризованный фоторецептор выпускает медиатор (предполагая, что это является глутаматом аминокислоты) из его синаптических терминалов на нейроны второго заказа в темноте. На легком (световом) возбуждении молекулы родопсина приводят isomerized к активной форме вышеупомянутого следующего каскада, приводя к закрытию каналов катиона мембраны фоторецептора, останавливая темновой поток и заставляя мембранные клетки фоторецептора гиперполяризовывать и останавливать выпуск медиатора к нейронам второго заказа (см. Stryer, 1991; Yau, 1994, и Kawamura, 1995, для обзоров.[3]

Рис.10.[3]

Рис. 10. Активация Rhodopsin при свете и каскаде фототрансдукции.

Составляющими «Темного потока» являются главным образом: приток Na + компонентов (80 %), Ca2 + компонентов — (15 %) и Mg2 + компонентов — (5 %) (Yau, 1994). В темноте необходим механизм, чтобы удалить Ca2 + так же как лишний Na +, и это, как полагают, сделано через теплообменник натрия/кальция в мембранах внешней доли фоторецептора. Ca2 +, как когда-то полагали, предназначен, чтобы быть вторым посыльным в соединении rhodopsin фотоизомеризации к мембранным событиям, но как теперь доказано имеет вторичную, но важную регулирующую роль в фототрансдукции. Хотя это непосредственно не участвует в каскаде трансдукции, но это действительно улучшает сигнальную способность палочек в ускорении восстановления после освещения и регулирует падение чувствительности палочек в устойчивом освещении (Yau, 1994). Последний открытый эффект — это механизм для легкой адаптации.

Фоторецепторы колбочки могут приспособиться к уровню освещения так, что наша зрительная система может видеть в диапазоне от плотных теней под деревом, до объектов на ярком снегу солнечного света при изменении интенсивности в пределах 7‒9 единиц регистрации легкой интенсивности (Normann и др., 1991). Фоторецепторы же палочек приспосабливаются в диапазоне 2 единиц регистрации второстепенной интенсивности и система приспособления объединена с адаптацией сети через целую визуальную систему, и позволяет целым 5 единицам регистрации второстепенной адаптации интенсивности в палочке, которая открывает зрение (Yau, 1994).

Фотопигменты экстерорецепторов колбочек и палочек сетчатки глаза[править | править код]

Разные опсины (версия Миг) различаются аминокислотами в составе молекул, и поглощают свет в несколько различном диапазоне длин волн, как ретиналь-связанные молекулы.

Фотопигменты экстерорецепторов сетчатки глаза колбочек[править | править код]

У человека идентифицировано три вида фотопигментов колбочек йодопсина (фотопсина):

  • 560 nm: rot-sensitives L‒Iodopsin mit L-Photopsin, Шаблон:UniProt. Defekte am OPN1LW-Gen sind die Ursache der Protanopie (красный цвет).
  • 530 nm: grün-sensitives M‒Iodopsin mit M-Photopsin, Шаблон:UniProt. Defekte am OPN1MW-Gen sind die Ursache der Deuteranopie (зелёный цвет).
  • 420 nm: blau-sensitives S-Iodopsin mit S-Photopsin, Шаблон:UniProt. Defekte am OPN1SW-Gen sind die Ursache der Tritanopie (синий, УФ цвет).
Cone type Name Range Peak wavelength[4][5]
S (OPN1SW) — «tritan», «cyanolabe» β 400—500 nm 420‒440 nm (УФ, синий)
M (OPN1MW) — «deutan», «chlorolabe» γ 450—630 nm 534‒545 nm (зелёный)
L (OPN1LW) — «protan», «erythrolabe» ρ 500—700 nm 564‒580 nm (красный)

О существовании и идентификации цианолаба[править | править код]

Рис. S. Распределение рецепторов в сетчатке бабуина . Синие колбочки были распределены регулярно в периферии, красные и зеленые колбочки были распределены беспорядочно всюду. Плотность распределения зелёных колбочек больше, чем красных, больше чем синих. Данные получены доктором Марком и его лабораторией впервые, где видны синие колбочки с предполагемым фотопигментом цианолабом.[6] Рис.9. Нейроны троп Булочки — «синей» Колбочки-S, расположенной в периферийной зоне ямки фовеа, воспринимающей сфокусиованные синие лучи света предметной точки на колбочки M/L в центральной ямке фовеа 0,2 мм из блока основных лучей RGB сфокусированного луча. Оппонентно выделенные биосигналы синего цвета ON в системе отбора цвета из пары синий-жёлтый с участием горизонтальных клеток H, что говорит о наличии не выделеннрго пока фотопигмента синего цвета цианолаба. При этом также OFF желтый сигнал может быть предоставлен по центру диффузному биполярному типу клеток Bi. (См. более подробно также в Тропы синих колбочек-S сетчатки глаза) [7]

* С точки зрения принципа трихроматизма следует:

  1. Идентификация спектральной чувствительности двух пигментов колбочки, относящейся к сетчатке глаза, денситометрией Руштона (Руштон, 1963) (См. Денситометрия (версия Миг), Денситометр (версия Миг)).
  2. Идентификация трех пигментов колбочки микроспектрометрией (Марки, Dobelle и MacNichol, 1964).
  3. Инентификация генетического кода для красных колбочек — L, зелёных колбочек — М. и синих колбочек — S (Nathans и другие, 1986a, b).
  4. Цвет, соответствующий функциям.
  5. Изолируя фоторецепторы и измерение их физиологического repsonses как функция длины волны (Baylor и другие, 1984).
  6. Спектральные размеры чувствительности (Wald-Marre — фунуционирование спектральной чувствительности и функционирование «   π … ~pidots Турникетов» механизмов).

Если теория трихроматизм (trichomatic) ранее была не в состоянии составлять четыре уникальных цвета: красный, зеленый, желтый и синий, и также не в состоянии объяснить, почему dichromats может чувствовать белый и желтый, то в настоящее время Трихроматизм с открытием третьего фоторецептора ipRGC сетчатки с фотопигментом меланопсином, с расшифровкой изменчивости опсинов, которые входят в мембраны клеток фоторецепторов палочек и колбочек в виде разновидностей опсина как родопсин (версия Миг) (палочки), йодопсин (версия Миг)(колбочки) и др., позволяют дифференциацироваться колбочкам и реагировать на нормализованные спектральные зоны лучей S,M,L (синих, зелёных, красных), участвуя в оппонентном отборе более ярких сигналов.

Недавние открытия ретиномоторной реакции фоторецепторов палочек и колбочек, проведенные флюоресцентные микроскопические исследования живых срезов сетчаток птиц дали возможность рассмотреть клетки колбочек, палочек на молекулярном уровне в цвете и стерео, где мозаика сетчатки содержит блоки из четырёх колбочек (четырехроматизм): фиолетовой, синей, зелёной и красной и т. д. Модель оппонентного цветного зрения в сочетании с работой нейронов мозга рассматривается на уровнях рецепторном и нейронном, которые дополняют друг друга. И вообще уже вопрос многокомпонентной модели цветного зрения как трихромаик, четырехроматик и т. д. не подлежит рассмотрению. (См. Цветное зрение у птиц (версия Миг), Лаборатория Р.Е.Марка (версия Миг), Ретиномоторная реакция фоторецепторов (версия Миг), Фоточувствительные клетки сетчатки ipRGC (версия Миг), Опсины (версия Миг)).

Рис.1. Спектральная чувствительность S-колбочек, М-колбочек и L-колбочек. Комбинированные результаты от разных авторов, используя различные способы, в том числе сетчатки денситометрия от Раштон (т и Ñ), microspectrometry от Коричневого и Вальд (n и “) и прирост порог производству искусственного monochromasy от Brinley (D и s) и прирост порог измерений от Wald (5) (От Моисея, р. а., Харт, в. м. (Ред.), Адлер ” Физиология Глаза, Клиническое Применение. Сент-Луис: C. V. Мосби Компании, 1987 [8]

Получены снимки колбочек (см.рис. S), графики трёх колбочек (см.рис.1), воспринимающих основные лучи КЗС — S,M,L, на которых видна графика точек синих лучей S, выделяемых S-колбочками, также видны сами синие колбочки, снятые в плане фокальной поверхности сетчатки. Вопрос пока не открытого фотопигмента йодопсина цианолаба не означает, что нет синей колбочки, и что разновидности опсина не содержат пока не открытый синий фотопигмент опсинов — цианолаб, который находится в колбочках.

Фотопигмент палочек родопсин[править | править код]

Родопсин принадлежит к обширному семейству G-белоксопряжённых рецепторов (GPCR-рецепторов), названному так за механизм трансмембранной передачи сигнала, основанный на взаимодействии с внутриклеточными примембранными G-белками. Появление его пространственной структуры, полученной с высоким экспериментальным разрешением, является очень важным событием для биологии и медицины, поскольку родопсин как «родоначальник» семейства А GPCR-рецепторов является своего рода «моделью» структуры и функций множества других рецепторов, чрезвычайно интересных с фундаментальной и практической (фармакологической) точек зрения. Свое название родопсин получил за ярко-красный цвет (по-гречески rhodon — означает «розовый», a opsis — зрение).

Дневное и ночное зрение[править | править код]

Из спектров поглощения родопсина видно, что восстановленный родопсин (при слабом «сумеречном» освещении) отвечает за ночное зрение, а при дневном «цветовом зрении» (ярком освещении) разлагается и максимум его чувствительности смещается в синюю область. Это наглядно показывает известный Эффект Пуркинье (версия Миг)..[9]

При достаточном, дневном освещении освещении палочка автоматически уходит из зоны восприятия дневных лучей КЗС и для восприятия дневного света открываются колбочки (см. Ретиномоторная реакция фоторецепторов сетчатки глаза), которые выделяют основные лучи видимого спектра сфокусированной предметной точки. Сигналы этих лучей равны длинам волн S,M,L (синих, зелёных, красных) не в цвете). Посылая их в мозг, в зрительных отделах создаётся цветное оптическое изображение стерео. Полное восстановление родопсина у человека (в темноте или при слабом освещении) занимает около 30 минут; в течении всего этого периода чувствительность нашего «сумеречного зрения» постепенно увеличивается, достигая максимума.

На основе проведённых фундаментальных исследований академика биохимика М. А. Островского в области работы фотопигмента родопсин в палочках[10] (Биохимия зрения и свободно-радикальное окисление (версия Миг)) было также подтверждено, что палочки с фотопигментом родопсином участвуют в зрительном процессе в условиях сумеречного и ночного зрения (чёрно-белого).

См. также[править | править код]

Анализаторы

Одним из важнейших свойств всего живого является раздражимость – способность воспринимать информацию о внутренней и внешней среде с помощью рецепторов. В ходе этого ощущение, свет, звук преобразуются рецепторами в нервные импульсы, которые анализируются центральным отделом нервной системы.

И.П. Павлов при изучении восприятия корой головного мозга различных раздражений ввел понятие анализатор. Под этим термином скрыта вся совокупность нервных структур, начинающаяся рецепторами и оканчивающаяся корой больших полушарий.

В любом анализаторе выделяют следующие отделы:

  • Периферический – рецепторный аппарат органов чувств, который преобразует действие раздражителя в нервные импульсы
  • Проводниковый – чувствительные нервные волокна, по которым движутся нервные импульсы
  • Центральный (корковый) – участок (доля) коры больших полушарий, который анализирует поступающие нервные импульсы
Зрительный анализатор

С помощью зрения человек получает большую часть информации об окружающей среде. Поскольку эта статья посвящена зрительному анализатору, рассмотрим его строение и отделы. Наибольшее внимание обратим на периферическую часть – орган зрения, состоящий из глазного яблока и вспомогательных органов глаза.

Глазное яблоко лежит в костном вместилище – глазнице. Глазное яблоко имеет три оболочки, которые мы детально изучим:

  • Наружная, называемая также – фиброзная оболочка
  • Средняя – сосудистая оболочка
  • Внутренняя оболочка – сетчатка

Большую часть полости глаза занимает стекловидное тело – прозрачное округлое образование, которое придает глазу шарообразную форму. Также внутри находится хрусталик – прозрачная двояковыпуклая линза, расположенная позади зрачка. Вы уже знаете, что изменения кривизны хрусталика обеспечивают аккомодацию – настройку глаза на наилучшее видение объекта.

Но благодаря каким именно механизмам происходит изменение его кривизны? Это возможно за счет сокращения ресничной мышцы. Попробуйте поднести к носу свой палец, постоянно смотря на него. Вы почувствуете в глазах напряжение – это связно с сокращением ресничной мышцы, благодаря чему хрусталик становится более выпуклым, чтобы мы могли рассмотреть близкорасположенный предмет.

Представьте другую картину. В кабинете врач говорит пациенту: “Расслабьтесь, посмотрите вдаль”. При взгляде вдаль ресничная мышца расслабляется, хрусталик становится уплощенным. Я очень надеюсь, что приведенные мной примеры помогут вам мнемонически запомнить состояния ресничной мышцы при рассматривании объектов вблизи и вдали.

По мере прохождения света через прозрачные среды глаза: роговицу, жидкость передней камеры глаза, хрусталик, стекловидное тело – свет преломляется и оказывается на сетчатке. Запомните, что изображение на сетчатке:

  • Действительное – соответствует тому, что на самом деле видим
  • Обратное – перевернуто вверх ногами
  • Уменьшенное – размеры отраженной “картинки” пропорционально уменьшены
Проводниковый и корковый отделы зрительного анализатора

Мы с вами изучили периферический отдел зрительного анализатора. Теперь вы знаете, что палочки и колбочки, возбужденные световым воздействием, генерируют нервные импульсы. Отростки нервных клеток собираются в пучки, которые образуют зрительный нерв, выходящий из глазницы и направляющийся к корковому представительству зрительного анализатора.

Нервные импульсы по зрительному нерву (проводниковый отдел) достигают центрального отдела – затылочных долей коры больших полушарий. Именно здесь происходит обработка и анализ информации, полученной в виде нервных импульсов.

При падении на затылок в глазах может появиться белая вспышка – “искры из глаз”. Это связано с тем, что при падении механически (вследствие удара) возбуждаются нейроны затылочной доли, зрительного анализатора, что и приводит к подобному явлению.

Заболевания

Конъюнктива – слизистая оболочка глаза, расположенная над роговицей, покрывающая глаз снаружи и выстилающая внутреннюю поверхность век. Главная функция конъюнктивы – выработка слезной жидкости, увлажняющей и смачивающей поверхность глаза.

В результате аллергических реакций или инфекций нередко происходит воспаление слизистой оболочки глаза – конъюнктивит, который сопровождается гиперемией (повышенным кровенаполнением) сосудов глаза – “красными глазами”, а также светобоязнью, слезотечением и отеком век.

Нашего пристального внимания требуют такие состояния как близорукость и дальнозоркость, которые могут быть врожденными, и, в таком случае, связанными с изменением формы глазного яблока, либо приобретенными и связанными с нарушением аккомодации. В норме лучи собираются на сетчатке, но при этих заболеваниях все складывается иначе.

При близорукости (миопии) фокус лучей от отраженного предмета возникает впереди сетчатки. При врожденной близорукости глазное яблоко имеет удлиненную форму, из-за которой лучи не могут достичь сетчатки. Приобретенная близорукость развивается из-за чрезмерной преломляющей силы глаза, которая может возникать вследствие увеличения тонуса ресничной мышцы.

Близорукие люди плохо видят предметы, расположенные вдали. Для коррекции миопии им требуются очки с двояковогнутыми линзами.

При дальнозоркости (гиперметропии) фокус лучей, отраженных от предмета, собирается позади сетчатки. При врожденной дальнозоркости глазное яблоко укороченное. Приобретенная форма характеризуется уплощением хрусталика и нередко сопутствует пожилому возрасту.

Дальнозоркие люди плохо видят близкорасположенные предметы. Им необходимы очки с двояковыпуклыми линзами для коррекции зрения.

Гигиена зрения

Для того, чтобы сохранить хорошее зрение на долгие годы, или же не допустить дальнейшего ухудшения зрения, следует придерживаться следующих правил гигиены зрения:

  • Читать, держа текст на расстоянии 30-35 см от глаз
  • При письме источник света (лампа) для правшей должен находиться с левой стороны, и, наоборот, для левшей – с правой стороны
  • Следует избегать чтения лежа при слабом освещении
  • Следует избегать чтения в транспорте, так как расстояние от текста до глаз постоянно меняется. Ресничная мышца то сокращается, то расслабляется – это приводит к ее слабости, снижению способности к аккомодации и ухудшению зрения
  • Следует избегать травм глаза, так как повреждения роговицы вызывают нарушение преломляющей способности, что приводит к ухудшению зрения

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Прежде, чем приступить к перечислению самых необычных и интересных фактов о цвете глаз, следует рассказать, почему цвет глаз у людей различается.

Цвет глаз – характеристика, определяемая пигментацией радужной оболочки глаза.

Радужная оболочка глаза – тонкая подвижная диафрагма глаза с отверстием (зрачком) в центре, расположенная за роговицей, перед хрусталиком, между передней и задней камерами глаза. Радужная оболочка практически полностью светонепроницаема.

Радужная оболочка состоит из двух слоёв:

  • передний слой, мезодермальный;
  • задний слой, эктодермальный.

Мезодермальный слой состоит из наружного пограничного отдела и стромы. В переднем слое распределены хроматофоры, содержащие пигмент меланин. От характера распределения меланина зависит цвет глаз.

Строма – тонкое сплетение волокон. Некоторые волокна в радужной оболочке описывают окружности, при этом большинство волокон радиально направлено к зрачку. В глазах тёмного цвета строма часто содержит пигментные гранулы. Глазам альбиносов и голубым глазам меланина не хватает.

Радужная оболочка не содержит зелёных и синих пигментов. Окрашивающим пигментом является меланин, при определённых концентрациях цвет глаз приобретает окраску от светло-карего до практически чёрного.

Интересно, что у всех новорожденных детей глаза имеют серо-голубой цвет, так как в строме радужки пигмент отсутствует. Цвет радужки меняется и формируется к третьему-шестому месяцу жизни ребёнка, что связано с накоплением меланоцитов в радужной оболочке. Окончательно цвет глаз у людей устанавливается к 10-12 годам.

Самый необычный и интересный факт о цвете глаз: все люди голубоглазые. Карие глаза на самом деле являются голубыми под коричневым пигментом, что является следствием генетической мутации, о которой будет рассказано ниже, в разделе о карих глазах.

Светлоглазых людей (в процентном отношении ко всем жителям данных регионов) больше всего проживает в северной Польше, странах Балтии, Швеции и Финляндии. Наибольший процент темноглазых людей живёт в Португалии и Турции.

Гетерохромия. Разный цвет глаз объясняется фактом избытка либо дефицита меланина вследствие болезней, травм, генетических мутаций. Явление разного цвета глаз называется гетерохромия. При частичной гетерохромии радужка разделена на две части. При абсолютной гетерохромии у человека наблюдается два разных цвета радужки: один может быть голубого цвета, второй – карего. На планете проживает 1% людей с данным необычным отклонением.

При ярком свете или сильном холоде цвет глаз у человека меняется. Данное интересное явление называется хамелеон.

Темноглазые люди выносливы и упорны, но в кризисных ситуациях отличаются раздражительностью.

Минимальная продолжительность зрительного контакта с впервые встреченным человеком составляет четыре секунды. Именно столько времени необходимо для определения цвета его глаз.

Интересно, что большинство людей с серыми глазами отличаются решительностью и выносливостью.

Эстония. Цвет глаз свидетельствует о географической наследственности. Люди с голубыми глазами встречаются чаще в северных регионах, с коричневым цветом – в местах с умеренным климатом, люди с черными глазами проживают в районе экватора. Больше всего людей с голубыми глазами проживает в странах Балтии. Интересный факт: в Эстонии 99% жителей имеют голубые глаза.

Существует медицинская лазерная процедура коррекции, позволяющая изменить цвет глаз.

Карий цвет глаз

Карий (коричневый) цвет глаз на самом деле является голубым. В данном случае во внешнем слое радужной оболочки содержится существенное количество меланина, в результате чего происходит поглощение как высокочастотного, так и низкочастотного света. Отражённый свет, суммарно, приводит к появлению коричневого (карего) цвета.

Исследователи установили интересный факт: десять тысяч лет назад у всех жителей планеты глаза были карие. Позднее появилась генетическая мутация в гене HERC2, у носителей которого снизилась выработка меланина в радужной оболочке, что привело к появлению голубого цвета.

Карий – самый распространённый цвет глаз на планете. Существует лазерная процедура, позволяющая удалить пигмент и сделать глаза голубыми. Вернуть прежний цвет после проведения процедуры невозможно.

Люди с карими глазами вызывают больше доверия у окружающих, чем голубоглазые – данный интересный факт установили японские психологи.

50% кареглазых людей отличаются замкнутостью.

Чёрный цвет глаз

Строение радужной оболочки людей с чёрным цветом глаз аналогично строению кареглазых. Однако концентрация меланина в ней настолько велика, что падающий на неё свет фактически полностью поглощается. Чёрный цвет глаз наиболее распространён среди представителей монголоидной расы в Восточной, Юго-Восточной и Южной Азии. В данных регионах радужная оболочка новорожденных детей уже насыщена меланином.

Болотный (ореховый) цвет глаз

Болотный (ореховый) цвет глаз является смешанным цветом, причина его появления объясняется умеренным содержанием меланина во внешнем слое радужной оболочки. В зависимости от освещения, болотный цвет глаз может приобретать коричнево-зелёный, золотистый и коричневый оттенок. Ореховый цвет является комбинацией коричневого (карего), синего или голубого.

Синий цвет глаз

Синий цвет глаз является результатом рассеяния света в строме. Чем меньше плотность стромы, тем насыщеннее синий цвет. Внешний слой сосудов радужной оболочки, образованный из коллагеновых волокон, отличается тёмно-синим цветом. Если волокна внешнего слоя радужной оболочки отличаются незначительным содержанием меланина и малой плотностью, глаз имеет синий цвет, при том, что радужная оболочка не содержит ни синих, ни голубых пигментов.

Голубой цвет глаз

Голубой цвет глаз, в отличие от синего, объясняется фактом более высокой плотности коллагеновых волокон стромы. Чем больше плотность волокон, тем светлее цвет.

Голубой цвет глаз появился вследствие мутации гена HERC2, в результате чего снизилась выработка меланина в радужной оболочке. Возникла данная мутация примерно 6-10 тысяч лет назад. Данный факт был установлен группой датских учёных Копенгагенского университета во главе с доцентом Хансом Эйбергом (Hans Eiberg) в 2008 году.

75% коренных жителей Германии имеют голубой цвет глаз.

Серый цвет глаз

Серый цвет глаз схож с голубым, при этом плотность волокон внешнего слоя более высока. Если плотность не так велика, цвет глаз будет серо-голубым. Серый цвет глаз наиболее распространён у жителей Северной и Восточной Европы, в отдельных регионах Северо-Западной Африки, а также у жителей Пакистана, Ирана и Афганистана.

Красный цвет глаз

Самый необычный и интересный цвет глаз, красный, обычно встречаются у альбиносов. Из-за отсутствия меланина радужка альбиносов прозрачная и выглядит красной из-за кровеносных сосудов. В отдельных случаях красный, смешиваясь с синим цветом стромы, даёт фиолетовый цвет глаз. Однако подобные отклонения встречаются у исключительно малого количества людей.

Жёлтый цвет глаз

Жёлтый цвет глаз встречается крайне редко. Жёлтый цвет формируется при содержании в сосудах радужной оболочки пигмента липофусцина (липохрома) очень бледного цвета. Однако в большинстве случаев факт данного цвета глаз объясняется наличием заболеваний почек.

Янтарный цвет глаз

Янтарный цвет глаз также объясняется фактом присутствия в радужной оболочке липохрома, содержащегося и в зелёных глазах. Янтарный цвет глаз имеет монотонную светлую жёлто-коричневую окраску, иногда красновато-медного или золотисто-зелёного оттенка.

Зелёный цвет глаз

Зелёный цвет глаз объясняется фактом незначительного содержания меланина. Во внешнем слое радужной оболочки распределён необычный светло-коричневый или жёлтый пигмент липофусцин. В сумме с получившимся в результате рассеяния в строме синим или голубым цветом получается зелёный.

Интересно, что чисто зелёный цвет глаз встречается крайне редко: окраска радужной оболочки обычно неравномерная, что приводит к появлению многочисленных оттенков. Из выводов исследований, проведенных совместно швейцарскими и израильскими учёными, следует: в формировании зелёного цвета глаз, возможно, играет доминирование в генотипе гена рыжего цвета волос одного из родителей. Данные выводы косвенно подтверждаются высокой распространённостью зелёных глаз среди рыжеволосых людей.

Глаза зелёного цвета имеют 1,6% людей планеты, он – самый редкий, так как искореняется в семье доминирующим геном карих.

Люди с зелёным цветом глаз чаще встречаются в Северной и Центральной Европе, значительно реже – в Южной. При проведении в 2007 году статистических исследований взрослого населения Голландии и Исландии был установлен любопытный факт: зелёные глаза у мужчин, жителей этих государств, встречаются гораздо реже, чем у женщин. Результаты исследования были опубликованы в разделе «Nature Genetic» портала Nature.Com.

Большинство людей с зелёными глазами отличаются стабильным характером.

image

БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ: поможем врачам и владельцам клиник выбрать оборудование для лечения глубоких пигментаций

Отправляя форму, я подтверждаю, что ознакомлен с Политикой оператора и даю Согласие на обработку персональных данных.

Оглавление

Аппараты — Глубокие пигментации

image

M22

Lumenis Многомодульная платформа IPL, фракционный лазер, Nd:YAG, Nd:YAG QS image

Fraxel

Solta Medical Неаблятивный фракционный лазер с интеллектуальной оптической системой

Другие Показания

Поствоспалительные дисхромии (поствоспалительная гиперпигментация) Купероз Расширенные поры

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации